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[1] L. Pinto, J. Davidson, R. Sukthankar, A. Gupta, 
Robust Adversarial Reinforcement Learning, March 2017.

Deep neural networks success in the field of Reinforcement Learning:

ÅFast computations

ÅFast Simulations

ÅImproved networks

But, most RL-based approaches fail to generalize, because: 

1. gap between simulation and real world 

2. policy learning in real world is hampered by data scarcity

RL Challenges for Real-world Policy Learning 

The training of the agent’s policy 

in the real-world:

Åtoo expensive
Ådangerous

Åtime-intensive 

=> scarcity of data. 
=> training often restricted to a limited set of scenarios, causing overfitting. 

=> If the test scenario is different (e.g., different friction coefficient, different mass), 
the learned policy fails to generalize. 

But a learned policy should be robust and generalize well for different scenarios.



5/29/2018

3

RL in the Real World: use more robots

From [2] Gu et al. , Nov. 2016.

Reinforcement Learning in simulation: 

Facing the data scarcity in the real-world by
ÅLearning a policy in a simulator
ÅTransfer learned policy to the real world 

But the environment and physics of the simulator 
are not the same as the real world. 

=> Reality Gap

This reality gap often results in unsuccessful transfer if the learned policy 
isn’t robust to modeling errors (Christiano et al., 2016; Rusu et al., 2016).
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Robust Adversarial Reinforcement Learning (RARL)

Training of an agent in the presence of a destabilizing adversary

ÅAdversary can employ disturbances to the system 

ÅAdversary is trained at the same time as the agent

ÅAdversary is reinforced: it learns an optimal destabilization policy.

Here policy learning can be formulated as a zero-sum, minimax 
objective function.

Experimental 
Environments
ÅInvertedPendulum

ÅHalfCheetah

ÅSwimmer

ÅHopper

ÅWalker2d

https://gym.openai.com/
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Unconstrained Scenarios: Challenges

In unconstrained scenarios: 

Åthe space of possible disturbances could be larger than the space of 
possible actions

=> sampled trajectories for learning etc. even sparser

Challenges of unconstrained scenarios

Use adversaries for modeling disturbances: 

Åwe do not want to and can not sample all possible disturbances

Åwe jointly train a second agent (the adversary)

Ågoal of adversary is to impede the original agent (the protagonist) 
Åby applying destabilizing forces. 

Årewarded only for the failure of the protagonist

=> the adversary learns to sample hard examples, disturbances that make 
original agent fail

Åthe protagonist learns a policy that is robust to any disturbances created by 
the adversary.
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Challenges of unconstrained scenarios

Use adversaries that incorporate 
domain knowledge:

ÅNaïve: give adversary the same action space as the protagonist 
ÅLike a driving student and driving instructor fighting for control of a dual-control car. 

Proposal paper:
Åexploit domain knowledge 
Åfocus on the protagonist’s weak points; 
Ågive the adversary “super-powers” – the ability to affect the robot or 

environment in ways the protagonist cannot                                                  
(e.g. suddenly change frictional coefficient or mass).

Adversary with Domain Knowledge

Figure from [1].
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Standard Reinforcement Learning (RL)

RL for continuous space Markov Decision Processes

(S, A, P, r, g, s0), where
S the set of continuous states
A the set of continuous actions
P: S x A x S ᴼᴙ the transition probability
Òȡ ! ᴼᴙ the reward function
gthe discount factor
s0 the initial state distribution

Standard Reinforcement Learning (RL)

ÅRL for continuous space Markov 
Decision Processes

(S, A, P, r, g, s0), where

S the set of continuous states

A the set of continuous actions

P: S x A x S ᴼᴙ the transition 
probability

Òȡ 3 Ø ! ᴼᴙ the reward function

gthe discount factor

s0 the initial state distribution

Batch policy algorithms [Williams 
1992, Kakade 2002, Shulman 2015]:

Learning a stochastic policy: 

ʌʃ: S x A O ᴙ which maximizes

В ‎ὶίȟὥ

the cumulative discounted reward 

Åɡthe parameters of the policy ʌ.

ÅPolicy ʌtakes action at given 
state st at time t
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2 Player gdiscounted zero-sum Markov Game 
(Litman 1994, Perolat 2015)

Å2 Player continuous space Markov Decision Processes
(S, A1, A2, P, r, g, s0), where
S the set of continuous states
A the set of continuous actions
P: S x A1 x A2 x S ᴼᴙ the transition probability
r: S x A1 x A2ᴼᴙ the reward function of both players
gthe discount factor
s0 the initial state distribution

Let Player 1 use strategy ʈand Player 2 use strategy ג, then the reward function is given by: 

rʈ,ג=Ὁ ͯ Ȣίȟ ͯ Ȣίὶίȟὥȟὥ

Player 1 will be maximizing while Player 2 minimizes the ɾdiscounted reward.

(=> Zero Sum 2 player game)

RALR Algorithm

The initial parameters for both players’ policies are sampled from a random 
distribution.

Two phases
1. Learn the protagonist’s policy while holding the adversary’s policy fixed. 
2. The protagonist’s policy is held constant and the adversary’s policy is 

learned. 
Repeat until convergence.

In each phase a roll-function is used sampling the Ntraj trajectories in 
environment ᴊ.
ᴊcontains the transition function Pand reward functions r1 and r2
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Experimental Setup

Environments built using OpenAI gym’s (Brockman et al., 2016).

Control of environments with the MuJoCo physics simulator (Todorov et al., 2012) .

RARL is built on top of rllab (Duan et al., 2016) 

uses Trust Region Policy Optimization (TRPO) (Schulman et al., 2015)

For all the tasks and for both the protagonist and adversary,

a policy network with two hidden layers with 64 neurons per layer is used. 

RARL and the baseline are trained with

Å100 iterations on InvertedPendulum

Å500 iterations on the other environments

Hyperparameters of TRPO are selected by grid search.
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Experiments

Hopper

ÅState space 11D: joint angles and joint 
velocities, …

ÅAdversary: 2D force on foot

Walker2d

ÅState space 17D: joint angles and joint 
velocities, …

ÅAdversary: 4D actions with 2D forces on both 
feet

InvertedPendulum

ÅState space 4D: position, velocity

ÅProtagonist: 1D forces; Adversary: 2D 
forces on center of pendulum

HalfCheetah

ÅState space 17D: joint angles and joint 
velocities, …

ÅAdversary: 6D actions with 2D forces

Swimmer

ÅState space 8D: joint angles and joint 
velocities, …

ÅAdversary: 3D forces to center of 
swimmer

Actions of Adversary
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Results Results
Changing Mass
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Results Changing Friction Conclusions Experiment Results

1. improves training stability

2. is robust to differences in training/test conditions

3. outperform the baseline even in the absence of the adversary
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Discussion

ÅResults for completely simulated environments: how does it translate 
to the real world?

ÅAdversary can be very easily too powerful. How do you incorporate/ 
formulate the adversary’s powers in your RARL model?

ÅCan you think of a good hybrid setup: part simulator, part the real 
thing. Have the adversary coming from/to the real world into the 
simulation…

Å…

From [4] Pinto et al., 2016.

Robotics at LIACS Media Lab

Research

ÅVision, audio, and passive sensor based

ÅEnvironment and object recognition and understanding

ÅParadigms: DNN, RL and ARL

Å…

Education

ÅRobotic Systems Course will be organized in Spring 2019

ÅRobotic Projects

From [6], A. Banino et al., Nature 2018.
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NAO

http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html From: Robin Borst, Robust self-balancing robot mimicking, Bachelor Thesis, August 2017
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