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[1] L. Pinto, J. Davidson, R. Sukthankar, A. Gupta,
Robust Adversarial Reinforcement Learning, March 2017.

Deep neural networks success in the field of Reinforcement Learning:

AFast computations
AFast Simulations
Almproved networks

But, most RL-based approaches fail to generalize, because:
1. gap between simulation and real world
2. policy learning in real world is hampered by data scarcity

RL Challenges for Real-world Policy Learning

The training of the agent’s policy
in the real-world:

Atoo expensive

Adangerous

Atime-intensive

=> scarcity of data.
=> training often restricted to a limited set of scenarios, causing overfitting.

=> If the test scenario is different (e.g., different friction coefficient, different mass),
the learned policy fails to generalize.

But a learned policy should be robust and generalize well for different scenarios.
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RL in the Real orld: use more robots

Fig. 1: Two robots learning a door opening task. We present
a method that allows multiple robots to cooperatively learn
a single policy with deep reinforcement learning.

From [2] Gu et al., Nov. 2016.

Reinforcement Learning in simulation:

Facing the data scarcityin the real-world by
AlLearning a policy in a simulator
ATransfer learned policy to the real world

But the environment and physics of the simulator
are not the same as the real world.

=> Reality Gap

This reality gap often results in unsuccessful transfer if the learned polic
isn’t robust to modeling errors (Christiano et al., 2016; Rusu et al., 2016}1.
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Robust Adversarial Reinforcement Learning (RARL)

Training of an agent in the presence of a destabilizing adversary

AAdversary can employ disturbances to the system
AAdversary is trained at the same time as the agent
AAdversary is reinforced: it learns an optimal destabilization policy.

Here policy learning can be formulated as a zero-sum, minimax
objective function.

Experimental
Environments
AlnvertedPendulum
AHalfCheetah
Aswimmer

AHopper
Awalker2d

https://gym.openai.com/

MuJoCo




5/29/2018

Unconstrained Scenarios: Challenges

In unconstrained scenarios:

Athe space of possible disturbances could be larger than the space of
possible actions

=>sampled trajectories for learning etc. even sparser

Challenges of unconstrained scenarios

Use adversaries for modeling disturbances:
Awe do not want to and can not sample all possible disturbances
Awe jointly train a second agent (the adversary

Agoal of adversary is to impede the original agent (the protagonisj
Aby applying destabilizing forces.
Arewarded only for the failure of the protagonist
=>the adversary learns to sample hard examples, disturbances that make
original agent fail

Athe protagonist learns a policy that is robust to any disturbances created by
the adversary.
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Use adversaries that incorporate
domain knowledge:

ANaive: give adversary the same action space as the protagonist
A Like a driving student and driving instructor fighting for control of a dual-control car.

Proposal paper:
Aexploit domain knowledge
Afocus on the protagonist’s weak points;

Agive the adversary “super-powers” — the ability to affect the robot or
environment in ways the protagonist cannot
(e.g. suddenly change frictional coefficient or mass).

Adversary with Domain Knowledge

InvertedPendulum HalfCheetah Swimmer

Figure 1. We evaluate RARL on a variety of OpenAl gym problems. The adversary learns to apply destabilizing forces on specific points
(denoted by red arrows) on the system, encouraging the protagonist to learn a robust control policy. These policies also transfer better to

new test environments, with different environmental conditions and where the adversary may or may not be present.

Figure from [1].
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Standard Reinforcement Learning (RL)

RL for continuous space Markov Decision Processes

(S, A, Pr,gsy), where

S the set of continuous states

A the set of continuous actions
P:SxAxSO a the transition probability
Od, ¢ thePreward function

gthe discount factor

s, the initial state distribution

Standard Reinforcement Learning (RL)

. Batch policy algorithms [Williams
ARL for continuous space Markov 1992, Kakade 2002, Shulman 2015]:

Decision Processes
(S, A, P 1,0 sy), where
S the set of continuous states
A the set of continuous actions "
P:SxAxSO 5 the transition B riifo
probability the cumulative discounted reward
Od, 3 = he fewafd function
gthe discount factor
s, the initial state distribution

Learning a stochastic policy:
A S X AP s which maximizes

Ag the parameters of the policyn.

APolicyn takes actiona, given
state’s, at time t
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2 Player gdiscounted zero-sum Markov Game
(Litman 1994, Perolat 2015)

A2 Player continuous space Markov Decision Processes
(S, A, A,, P 1, 0 ), where
S the set of continuous states
A the set of continuous actions
P:SxA;xA,xSO g the transition probability
r:SxA;xA,© a the reward function of both players
gthe discount factor
s, the initial state distribution

Let Player 1 use strategy { and Player 2 use strategy: , then the reward function is given by:

I'[YA:‘O M (fﬂ)ﬁ M (Eﬂ)l(th)Fh))

Player 1 will be maximizing while Player 2 minimizes the discounted reward.
(=> Zero Sum 2 player game)

RALR Algorithm

The initial parameters for both players’ policies are sampled from a random
distribution.

Two phases

1. Learn the protagonist’s policy while holding the adversary’s policy fixed.

2. IThe prgtagonist's policy is held constant and the adversary’s policy is
earned.

Repeat until convergence.

In each phase a roll-function is used sampling the N,,; trajectories in
environment J .

J contains the transition function Pand reward functions £ and 7?2
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Algorithm 1 RARL (proposed algorithm)

Input: Environment £: Stochastic policies y and v
Initialize: Learnable parameters 6 for g and 6 for v

{(sE, aft a2t v}t )} + roll(£, foe s ver s Niaj)
B + policyOptimizer({(si, aft, v}, . 6)

end for

by +— 6,

{(“";' ”l”' u?’.. 1‘{”. l‘fi )} — roll(&, e Ver -\'lL'.llJ
0 « policyOptimizer({(si, a?', r#%)}, v, 0Y)
end for
end for

e AH
Return: 07, 67

i Niter

Experimental Setup

Environments built using OpenAl gym'’s (Brockman et al., 2016).
Control of environments with the MuloCo physics simulator (Todorov et al., 2012) .

RARL is built on top of rllab (Duan et al., 2016)
uses Trust Region Policy Optimization (TRPO) (Schulman et al., 2015)

For all the tasks and for both the protagonist and adversary,
a policy network with two hidden layers with 64 neurons per layer is used.

RARL and the baseline are trained with
A 100 iterations on InvertedPendulum

A 500 iterations on the other environments

Hyperparameters of TRPO are selected by grid search.
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InvertedPendulum

InvertedPendulum
A state space 4D: position, velocity

A Protagonist: 1D forces; Adversary: 2D
forces on center of pendulum

HalfCheetah

A state space 17D: joint angles and joint
velocities, ...

A Adversary: 6D actions with 2D forces
Swimmer

A state space 8D: joint angles and joint
velocities, ...

A Adversary: 3D forces to center of
swimmer

Swimmer Hopper Walker2d

Hopper

A State space 11D: joint angles and joint
velocities, ...

A Adversary: 2D force on foot
Walker2d

A State space 17D: joint angles and joint
velocities, ...

A Adversary: 4D actions with 2D forces on both
feet

(@) e (b) Actions of Adversary

disturbance

o

(c)

cart velocity

Figure 9. Visualization of forces applied by the adversary on Hop
per. On the left, the Hopper's foot is in the air while on the rigt
the foot is interacting with the ground.

Figure 8. Visualization of forces applied by the adversary on In-
vertedPendulum. In (a) and (b) the cart is stationary, while in (¢)
and (d) the cart is moving with a vertical pendulum.
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HalfCheetah Swimmer

Results

»__ InvertedPendulum
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Figure

Iterations
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variance across runs.

500
Hterations

Herations
Baseline (TRPO)

RARL

2. Cumulative reward curves for RARL trained policies
ve

a better mean than the base

line. For tasks like Hopper, we also see a significant reduction of

Table 1. Comparison of the best policy learned by RARL and the baseline (meanzone standard deviation)

Results
Changing Mass

HalfCheetah

6 7
Mass of torso

Walker2d

%6 25 30 35 40 45 50 Y3 a5 6 T8
Mass of torso Mass of torso
Baseline (TRPO) RARL
| InvertedPendulum  HalfCheetah  Swimmer Hopper Walker2d ﬁﬁ';’:;g T‘:': ggt:?:‘ 5]]‘:’[‘:_n‘f‘:z“?:]’:i:“‘_’lflgki‘_:erE"[ll.']‘;ic; :1"
- - . - ; ; - - — changi ass between training a sting. verted-
Baseline 1000 0.0 5003 & 44 358 +£2.4 3614 £2.16 5418 & 87 Pendulum the mass of the pendulum is varied, while for the other
RARL 1000 £ 0.0 5444 + 97 354+1.5 3590+7.4 5854 +£159 tasks, the mass of the torso is varied.
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Results Changing Friction

HalfCheetah Hopper Walker2d
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Figure 6. The graphs show robustness of RARL policies to changing friction between training and testing. Note that we exclude the
results of InvertedPendulum and the Swimmer because friction is not relevant to those tasks.

Conclusions Experiment Results

1. improves training stability
2. is robust to differences in training/test conditions
3. outperform the baseline even in the absence of the adversary

12
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Discussion

AResults for completely simulated environments: how does it translate
to the real world?

AAdversary can be very easily too powerful. How do you incorporate/
formulate the adversary’s powers in your RARL model?

Acan you think of a good hybrid setup: part simulator, part the real
thing. Have the adversary coming from/to the real world into the
simulation...

A..

From [4] Pinto et al., 2016.

Robotics at LIACS Media Lab

Research

AvVision, audio, and passive sensor based

AEnvironment and object recognition and understanding
AParadigms: DNN,RLand ARL 38 B¢ =2 ™0 68 W &

52 0.

Education F;t;m [6]:;. Bani;o et an,TNatur;2018.ﬂ

ARobotic Systems Course will be organized in Spring 2019
ARobotic Projects

13
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Figure 5.4: The five poses that have been selected to evaluate the effect of the balance controller.
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